| Write your name here Surname | Oth | er names | | | | | | |--|---------------|------------------|--|--|--|--|--| | Edexcel GCE | Centre Number | Candidate Number | | | | | | | Chemistry Advanced Subsidiary Unit 3B: Chemistry Laboratory Skills I Alternative | | | | | | | | | Wednesday 8 May 2013 – Morning Time: 1 hour 15 minutes Paper Reference 6CH07/01 | | | | | | | | | Candidates may use a calculator. Total Marks | | | | | | | | # **Instructions** - Use **black** ink or ball-point pen. - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer **all** questions. - Answer the questions in the spaces provided - there may be more space than you need. ## Information - The total mark for this paper is 50. - The marks for each question are shown in brackets use this as a guide as to how much time to spend on each question. - You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling. - A Periodic Table is printed on the back cover of this paper. # **Advice** - Read each question carefully before you start to answer it. - Keep an eye on the time. - Try to answer every question. - Check your answers if you have time at the end. P 4 1 6 5 2 A 0 1 1 2 Turn over ▶ PEARSON # Answer ALL the questions. Write your answers in the spaces provided. - 1 Tests were carried out on compounds **X**, **Y** and **Z**. Complete the tables below. - (a) Compound **X** is a white, water-soluble solid. | | Test | Observation | Inference
(Name or formula) | | |-------|---|-------------|----------------------------------|-----| | (i) | Flame test | Lilac flame | | (1) | | (ii) | To a solution of X , add barium chloride solution and acidify with hydrochloric acid | | Sulfate ions absent | (1) | | (iii) | To a solution of X , add dilute nitric acid followed by | | lodide ions present | (2) | | (iv) | Add concentrated aqueous ammonia solution to the mixture remaining from test (iii) | | Confirms presence of iodide ions | (1) | (v) The **formula** of **X** is: (1) (b) Compound **Y** is a white solid that is insoluble in water. | | Test | Observation | Inference
(Name or formula) | | |------|---|----------------------------------|--------------------------------|-----| | (i) | Flame test | Yellow-red (brick red)
flame | | (1) | | (ii) | Add dilute
hydrochloric acid to Y | The mixture fizzed and the solid | | | | | Bubble the gas through | It turned milky | CO ₂ evolved | (2) | (iii) The **formula** of **Y** is: (1) (c) **Z** is a colourless organic liquid with only one functional group. **Z** is completely miscible with water to form a neutral solution. | | Test | Observation | Inference | | |-------|---|---------------------------------------|----------------------|-----| | (i) | Add bromine water to Z | No colour change | | (1) | | (ii) | Add solid
phosphorus(V) chloride,
PCI ₅ , to Z | Misty fumes (of
hydrogen chloride) | | (1) | | (iii) | Warm Z with potassium dichromate(VI) solution and dilute sulfuric acid | Colour changes from orange to green | Z could be or | (0) | | | | | | (2) | - (d) The composition by mass of \mathbf{Z} is C 60.0%, H 13.3%, O 26.7%. - (i) Calculate the empirical formula of **Z**. (2) (ii) The molecular formula of **Z** is the same as its empirical formula. Give the **displayed** formulae of the two possible isomers of **Z**. (2) (Total for Question 1 = 18 marks) - 2 An experiment to determine the enthalpy change of reaction between aqueous copper(II) sulfate and zinc was carried out as follows. - 1. 50.0 cm³ of copper(II) sulfate solution, of concentration 1.00 mol dm⁻³, was placed in a polystyrene cup. - 2. The temperature of the solution was measured with a $0-110\,^{\circ}\text{C}$ thermometer and was found to be 23.0 $^{\circ}\text{C}$. - 3. Zinc powder with a mass of 5 g (an excess) was added to the solution with vigorous stirring and the highest temperature recorded was 69.5 °C. - (a) (i) Write the **ionic** equation for the reaction between zinc and aqueous copper(II) ions, including state symbols. (2) (ii) Calculate the quantity of heat energy produced in the experiment above, giving your answer in J. (Assume that the heat capacity of the mixture is $4.18 \text{ J g}^{-1} \, ^{\circ}\text{C}^{-1}$ and its density is $1.00 \, \text{g cm}^{-3}$.) Use the expression energy transferred in joules = mass \times specific heat capacity \times temperature change (iii) Calculate the number of moles of copper(II) sulfate used in the experiment. (1) | (iv) Use your answers from (a)(ii) and (a)(iii) to calculate the enthalpy change for the reaction in kJ mol ⁻¹ . Give your answer to three significant figures and include the appropriate sign. | (2) | |---|-------| | (b) The thermometer used in this experiment gave an uncertainty in each temperature reading of ±0.5 °C. (i) State the maximum temperature difference in this experiment that could have been obtained using this thermometer. | (1) | | (ii) What is the percentage error in the temperature change using this thermometer? | (1) | | (c) Using the same equipment , together with a stop clock, suggest a procedure that would improve the accuracy of this experiment by obtaining a more accurate temperature change. You must use the same mass of zinc powder and the same volume of 1.00 mol dm ⁻³ copper(II) sulfate solution. | (4) | | (Total for Question 2 = 13 ma | nrks) | | 3 | | valkanes and bromoalkanes can be made from alcohols by reaction of the old with sodium chloride or bromide, in the presence of 50% aqueous cacid. | | | | | |--------|---|---|-----|--|--|--| | | Iodoalkanes cannot be made from sodium iodide and sulfuric acid; red phosphorus and iodine can be used instead as the halogenating agent. | | | | | | | | (a) (i) | What would you see if concentrated sulfuric acid was added to solid sodium iodide? Give two observations. | (2) | | | | | 1 | | | | | | | |
2. | | | | | | | | | | | | | | | | | (ii) | Explain why sodium iodide and sulfuric acid cannot be used to make iodoalkanes from alcohols. | (0) | | | | | | | | (2) | ve the equation for the reaction between phosphorus and iodine to form osphorus(III) iodide. State symbols are not required. | (1) | (c) A preparation of 1-iodobutane is given in outline below. ### Procedure - 1. Suitable quantities of red phosphorus and butan-1-ol are placed in a round-bottomed flask fitted with a reflux condenser. - 2. The mixture is heated until it boils gently and then the heat source is removed. - 3. A suitable quantity of powdered iodine is added in small portions down the condenser at a rate which just maintains gentle boiling. The reaction should be allowed to subside after each addition. - 4. After the addition of iodine is complete, the mixture is heated under reflux for 30 60 minutes, until little or no iodine is visible. - 5. The apparatus is allowed to cool and the condenser rearranged for distillation. - 6. The crude 1-iodobutane is distilled off until the residue in the distilling flask is about one-fifth of its original volume. Double its volume of water is added and the distillation continued until no more oily drops condense into the receiver. - 7. The crude 1-iodobutane is separated and washed with dilute sodium thiosulfate solution and then with dilute sodium carbonate solution. - 8. The organic layer is separated and allowed to stand over anhydrous calcium chloride. - (i) What does the manner in which the iodine is added in **step 3** suggest about the nature of the reaction? (1) (ii) Completion of **step 4** requires that 'little or no iodine is visible'. State what you would look for in this step to ensure that this is true. (1) | (iii) Draw the apparatus that is used in step 6 for distillation. | (3) | |---|-----|
(iv) Suggest why the first washing of the product in step 7 is with dilute sodium thiosulfate solution rather than with water alone. | (1) | | | | | (v) State why calcium chloride used in step 8 must be anhydrous. | (1) | | | | | (vi) To complete the preparation, after decanting the mixture from the calcium chloride, there should be a step 9 . What is this step? | (1) | | | | | | | | (d) | Chloroalkanes can be made from an alcohol and phosphorus(V) chloride, PCI ₅ . | |-----|--| | | The equation for the reaction of butan-1-ol with PCl ₅ is | $$CH_1CH_2CH_2CH_2OH + PCI_5 \rightarrow CH_1CH_2CH_2CH_2CI + HCI + POCI_5$$ This reaction is not suitable for the manufacture of 1-chlorobutane on a large scale. (i) In a laboratory preparation of 1-chlorobutane, 95.0 g of butan-1-ol was used. Calculate the maximum mass of 1-chlorobutane that could be obtained. (Assume the molar masses are, in g mol⁻¹, butan-1-ol = 74.0, 1-chlorobutane = 92.5) (2) (ii) In practice, 95.3 g of 1-chlorobutane was obtained. Calculate the percentage yield. (1) (iii) Give **one** reason why the actual yield is lower than the maximum possible yield. (1) (iv) Give **two** reasons why this reaction would not be used industrially to make 1-chlorobutane. (2) (Total for Question 3 = 19 marks) **TOTAL FOR PAPER = 50 MARKS** # The Periodic Table of Elements | | | | | _ | | | | | | | | | |-------|---------------------------|--|-------------------------------------|------|--------------------------|-------|-----------------------------|-------|-----------------------|----|---|--------| | 0 (8) | 4.0
He helium 2 | 20.2
Ne | 39.9
Ar
argon
18 | 83.8 | Krypton | 131.3 | Xenon | 54 | Rn
radon | 98 | ted | _ | | 7 | (17) | 19.0 F fluorine | 35.5
Cl
chlorine
17 | 79.9 | Br
bromine | 126.9 | -
iodine | 53 | At
astatine | 85 | ееп герог | إ | | 9 | (16) | 16.0
O
oxygen
8 | 32.1
S
sulfur
16 | 79.0 | Selenium | 127.6 | Te
tellurium | 52 | Po polonium | 84 | 116 have b
rticated | į | | 2 | (15) | 14.0
N
nitrogen | 31.0 P | 74.9 | As
arsenic | 121.8 | Sb antimony | 209.0 | Bi
bismuth | 83 | tomic numbers 112-116 hav
but not fully authenticated | 9 | | 4 | (14) | 12.0
C
carbon | Si
siticon | 72.6 | Ge
germanium | 118.7 | S = | 50 | Pb
lead | 82 | Elements with atomic numbers 112-116 have been reported but not fully authenticated | ! | | e | (13) | 10.8
B
boron
5 | 27.0
Al
aluminium | 69.7 | Ga
gallium | 114.8 | n | 204.4 | TI
thallium | 81 | ents with | 1 | | | ' | | (12) | 65.4 | Zinc | 112.4 | Cd cadmium | 200.6 | Hg
mercury | 80 | Elem | 1 | | | | | (11) | 63.5 | Cu | 107.9 | Ag
silver | 197.0 | Au | 79 | [272] Rg roentgenium | | | | | | (10) | 58.7 | nickel | 106.4 | Pd
palladium | 195.1 | Pt
platinum | 78 | | | | | | | (6) | 58.9 | Co
cobalt | 102.9 | Rh
rhodium | 45 | r
iridium | 77 | | 60 5 | | | 1.0 H hydrogen | | (8) | 55.8 | Fe iron | 101.1 | 2 | 190.2 | Os
osmium | 76 | Hs
Hassium | 801 | | | | | (2) | 54.9 | Mn
manganese | [86] | Tc | 43 | Re
rhenium | 75 | [264] Bh bohrium |)
[| | | | mass
bol
umber | (9) | 52.0 | Cr Mn chromium manganese | 95.9 | Mo Tc molybdenum technetium | 183.8 | W | 74 | [266] Sg seaborgium | 90 | | | Key | relative atomic mass atomic symbol name atomic (proton) number | (5) | 50.9 | V
vanadium | 92.9 | _ | 180.9 | Ta
tantalum | 73 | _ m | | | | | relati
ato
atomic | 9 | 47.9 | Titanium | 91.2 | Zr
zirconium | 40 | _ | 72 | [261] Rf nutherfordium | 40 3 | | | | | (3) | 45.0 | Scandium | 88.9 | Y | 138.9 | La* | 22 | [227] Ac* actinium | § . | | 2 | (2) | 9.0 Be beryllium 4 | 24.3
Mg
magnesium | 40.1 | Calcium | 87.6 | Sr
strontium | 38 | | 26 | [226] Ra radium | 8 | | - | <i>(</i>) | 6.9
Li
lithium | 23.0
Na
sodium
11 | 39.1 | K
potassium | 85.5 | Rb
rubidium | 37 | Cs
caesium | 22 | [223] Fr francium | 6 | | | | | | | | | | | | | | _ | ^{173 175}Yb Lu ytterbium lutetium Md No Lr mendelevium nobelium lawrencium [257] 103 [254] 102 Tm thullium 69 [256] **Md** 101 [253] **Fm** fermium 167 **Er** erbium 68 100 165 **Ho** holmium 67 163 Dy dysprosium 99 (247) Cm curium 96 Pr Nd Paseodymium p 238 U uranium 92 9 [231] Pa 59 9 Ce Cerium 58 232 **Th** thorium 90 * Lanthanide series * Actinide series